
Subclasses

Our last big topic for classes in subclasses. These model
situations where there are hierarchies of information.

For example, every child knows that Things can be Animals,
Vegetables, or Minerals:

Thing

Animal Vegetable Mineral

We could subdivide each of these classes. Animals, for
example might be bugs or fish or mammals:

Thing

Animal Vegetable Mineral

Bug Fish Mammal

Mammals can be divided into people and critters; people
can be workers or students or CEO's:

Thing

Animal Vegetable

Bug Fish Mammal

Mineral

Critter Person

Worker Student CEO

Students, of course, can be College or Con:

Thing

Animal Vegetable

Bug Fish Mammal

Mineral

Critter Person

Worker Student CEO

We could add many more refinements to this.

Think about the properties of these classes. Things have
location and not much else. Persons have names and
phone numbers. Con students have instruments.

College Con

Thing

Animal Vegetable

Bug Fish Mammal

Mineral

Critter Person

Worker Student CEO

College Con

Any property that a class has is also held by all of the
classes below it. Since Persons have names, so do
Workers, Students, and CEO's. It doesn't work the other
way -- Con Students have instruments, but Persons don't
necessarily, nor do Mammals or Animals.

Thing

Animal Vegetable

Bug Fish Mammal

Mineral

Critter Person

Worker Student CEO

College Con

There is an "is a" relationship as we go down the
hierarchy: every Animal is a Thing, every Mammal is an
Animal, every Person is a Mammal, every Student is a
Person. It doesn't work the other way -- not every Person
is a Student.

Now consider just one pair of these classes

Person

Student

Persons have names and phone numbers. Because all
students are Persons, all Students have names and phone
numbers. If we are listing the properties of a class, we
don't need to say that Students have names; it is enough
to know that Persons have names, and Students are
Persons.

Person

Student

When we model this with classes in Python, we say that
class Person is a superclass or parent class, while Student
is a subclass or child class. A subclass in Python inherits
all of the properties (instance variables and methods) of
its parent class. The subclass may override this
inheritance. For example, our Person class may have
Print(self) method that prints the person's name. The
Student class will inherit is method, but we may give the
student class a different Print(self) method that prints
both the student's name and year.

Making subclasses in Python is easy.

class Person:
<blah blah blah>
<defs of class Person's methods>

class Student(Person):
<defs of class Student's methods>
<Class Student has all of class Person's methods>
< without them being restated here>

If students are people, it would be good for class
Student constructor to call the class Person
constructor. Suppose the Person constructor takes
one argument, the Person's name. How does the
Student constructor call it?
A) def __init__(self, name): # Student constructor

self.__init__(name)

B) def __init__(self, name): # Student constructor
Person.__init__(name)

C) def __init__(self, name): # Student constructor
Person.__init__(self, name)

